Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5996-6006, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504451

RESUMO

2,4-Dinitroanisole (DNAN) is a main constituent in various new insensitive munition formulations. Although DNAN is susceptible to biotic and abiotic transformations, in many environmental instances, transformation mechanisms are difficult to resolve, distinguish, or apportion on the basis solely of analysis of concentrations. We used compound-specific isotope analysis (CSIA) to investigate the characteristic isotope fractionations of the biotic (by three microbial consortia and three pure cultures) and abiotic (by 9,10-anthrahydroquinone-2-sulfonic acid [AHQS]) transformations of DNAN. The correlations of isotope enrichment factors (ΛN/C) for biotic transformations had a range of values from 4.93 ± 0.53 to 12.19 ± 1.23, which is entirely distinct from ΛN/C values reported previously for alkaline hydrolysis, enzymatic hydrolysis, reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, and UV-driven phototransformations. The ΛN/C value associated with the abiotic reduction by AHQS was 38.76 ± 2.23, within the range of previously reported values for DNAN reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, albeit the mean ΛN/C was lower. These results enhance the database of isotope effects accompanying DNAN transformations under environmentally relevant conditions, allowing better evaluation of the extents of biotic and abiotic transformations of DNAN that occur in soils, groundwaters, surface waters, and the marine environment.


Assuntos
Anisóis , Carbono , Compostos Férricos , Isótopos de Nitrogênio , Minerais , Ferro , Óxidos
2.
J Hazard Mater ; 407: 124341, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33144007

RESUMO

We present the first report of biotransformation of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN), replacements for the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT), respectively, by methane-oxidizing cultures under aerobic conditions. Two consortia, dominated by Methylosinus spp., degraded both compounds with transient production of reduced NTO products, and non-stoichiometric production of reduced DNAN products. No release of inorganic nitrogen was observed with either compound, indicating that NTO and DNAN may be utilized as nitrogen sources by these consortia. The pure culture Methylosinus trichosporium OB3b also degraded both compounds. Degradation was observed in the presence of acetylene (a known inhibitor of methane monooxygenase; MMO) when methanol was supplied, indicating that MMO was not involved. Furthermore, studies with purified soluble MMO (sMMO) from OB3b indicated that neither compound was a substrate for sMMO. Degradation was inhibited by 2-iodosobenzoic acid, but not by dicoumarol, suggesting involvement of an oxygen- and dicoumarol-insensitive (nitro)reductase. These results indicate methanotrophs can aerobically degrade NTO and DNAN via one or more (nitro)reductases, with sMMO serving a supporting role deriving reducing equivalents from methane. This finding is important because methanotrophic bacteria are widely dispersed, and may represent a previously unrecognized route of NTO and DNAN biotransformation in aerobic environments.


Assuntos
Anisóis , Metano , Biotransformação , Nitrocompostos , Oxirredução , Triazóis
3.
Biodegradation ; 30(2-3): 173-190, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989421

RESUMO

While bioremediation technologies for trichloroethene (TCE), a suspected carcinogen, have been successfully demonstrated in neutral pH aquifers, these technologies are often ineffective for remediating TCE contamination in acidic aquifers (i.e., pH < 5.5). Acidophilic methanotrophs have been detected in several low pH environments, but their presence and potential role in TCE degradation in acidic aquifers is unknown. This study applied a stable isotope probing-based technique to identify active methanotrophs that are capable of degrading TCE in microcosms prepared from two low pH aquifers. A total of thirty-five clones of methanotrophs were derived from low pH microcosms in which methane and TCE degradation had been observed, with 29 clustered in γ-Proteobacteria and 6 clustered in α-Proteobacteria. None of the clones has a high similarity to known acidophilic methanotrophs from other environments. The presence and diversity of particulate MMO and soluble MMO were also investigated. The pmoA gene was detected predominantly at one site, and the presence of a specific form of mmoX in numerous samples suggested that Methylocella spp. may be common in acidic aquifers. Finally, a methane-grown culture at pH 4 was enriched from an acidic aquifer and its ability to biodegrade various chlorinated ethenes was tested. Interestingly, the mixed culture rapidly degraded TCE and vinyl chloride, but not cis-dichloroethene after growth on methane. The data suggest that aerobic biodegradation of TCE and other chlorinated solvents in low pH groundwater may be facilitated by methanotrophic bacteria, and that there are potentially a wide variety of different strains that inhabit acidic aquifers.


Assuntos
Bactérias/metabolismo , Água Subterrânea , Metano/metabolismo , Microbiota , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental
4.
Biodegradation ; 28(5-6): 453-468, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29022194

RESUMO

The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.


Assuntos
Bactérias/metabolismo , Dioxanos/metabolismo , Etano/metabolismo , Metano/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Dioxanos/química , Etano/análise , Etilenos/análise , Etilenos/metabolismo , Água Subterrânea , Metano/análise , Oxigenases/química , Oxigenases/metabolismo , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...